Буферный раствор (рус. Буферные раствор, англ. Buffer solution, нем. Pufferlösung f) — водный раствор, содержащий соединения, которые противостоят значительном изменении pH при добавлении небольшого количества кислоты или основания.

Общее описание

Иногда понятие «буферный раствор» используется в более широком смысле: для растворов, имеющих любой постоянный параметр (окислительно-восстановительный потенциал, активность ионов кальция и т.д.), почти не меняется при незначительном изменении состава системы, например при концентрирования, разбавления, добавлении небольших количеств посторонних соединений. Стабильность достигается благодаря тому, что компоненты буферной системы находятся в состоянии химического равновесия.

Буферы широко используются в химических, биологических и медицинских лабораториях для поддержания устойчивого pH среды, в которой происходят химические реакции. Они также входят в состав большого количества промышленных товаров, таких как некоторые медицинские препараты (например забуференный аспирин), средства для ухода за кожей и волосами и тому подобное. Буферные растворы необходимы для обеспечения гомеостаза живых организмов, например pH крови человека поддерживается на постоянном уровне, оптимальном для транспорта кислорода (около 7,4), благодаря нескольким буферным системам.

Для обеспечения устойчивого pH буфер должен содержать два соединения: одну, которая бы препятствовала уменьшению концентрации ионов H 3 O (или упрощенно — H +), а другая — которая препятствовала ее увеличению, при этом они не должны нейтрализовать друг друга. По используется пара слабая кислота (донор протонов) / ее сопряженная основа (акцептор протонов) в примерно одинаковых концентрациях, и значительно реже — слабое основание / сопряженная с ней кислота. Буферные растворы часто делают на основе пар уксусная кислота / ацетат, дигидрогенфосфат / моногидрогенфосфат, угольная кислота / гидрокарбонат и др.

Механизм действия буферных систем

Пусть буферная система содержит примерно равные концентрации слабой кислоты (AH) и сопряженной с ней основания (A -), при добавлении к ней сильной кислоты, является донором ионов H +, последние связываться с основанием A -:

H 3 O + + A → H 2 O + AH.

С другой стороны, при добавлении небольшого количества щелочи, поставляет ионы OH в раствор, с ними взаимодействовать слабая кислота

OH — + AH → H 2 O + A -.

Эти две оборотные реакции и обеспечивают буферные свойства раствора: добавление к раствору ионов H + или OH влечет изменение соотношения слабой кислоты и сопряженной основе и совсем незначительное смещение pH.

Достаточно распространенное заблуждение о том, что буферные растворы способны поддерживать pH на абсолютно постоянном уровне. На самом деле это не так, добавление даже небольшого количества кислоты или щелочи к такому раствора приводит к изменению водородного показателя, но очень незначительной. Например, если добавить к 1 л чистой воды 0,01 моль соляной кислоты, то ее pH изменится от 7,0 до 2,0, то есть на 5 единиц, с другой стороны, при добавлении такого же количества кислоты в 1 л буферного раствора, его pH может измениться всего на 0,1.

Буферная емкость и область буферирования

Способность любого буферного раствора поддерживать примерно постоянный уровень pH ограничен. При добавлении достаточного количества кислоты или основания в буфер, его pH конце начнет стремительно падать или расти соответственно. Количество ионов H 3 O + или OH -, которую следует добавить к буферного раствора, чтобы изменить его водородный показатель на единицу называется буферной емкостью.

Буферная емкость зависит от концентрации компонентов раствора и их соотношение. Чем больше концентрация слабой кислоты и сопряженной основы, тем больше будет буферная емкость раствора. Стандартно используются молярные концентрации по крайней мере в 100 раз выше константу кислотной диссоциации (K a) слабой кислоты, и по крайней мере в 10 раз выше концентрацию ионов H 3 O + или OH -, которую следует нейтрализовать.

Наиболее эффективны буфера, в которых соотношение компонентов раствора максимально близкое к 1, когда же оно больше 10: 1 или менее 1:10, такие буфера совершенно не пригодны к использованию. В случае когда [AH]: [A -] = 1: 1 pH буферного раствора равной pK a слабой кислоты, при этом буферная емкость раствора будет наиболее симметричной, то есть он может одинаково эффективно противостоять закислению и ощелачивание. Для каждой пары слабая кислота / сопряженная основная существует так называемая область буферирования, то есть диапазон pH, в котором она может использоваться для создания эффективного буферного раствора. Область буферирования определяется как pK a слабой кислоты ± 1. Так что для буфера с pH 5 можно использовать пару уксусная кислота / ацетат (pK a = 4,76), а для буфера с pH 9 — аммиак / аммоний (pK a = 9,25).

PH буферного раствора

pH буферного раствора при известной соотношение между количествами слабой кислоты и сопряженной основы можно определить, используя уравнения Гендерсона-Гассельбаха:

Буферный раствор ,

где pK a — константа кислотной диссоциации слабой кислоты, [AH] — ее молярная концентрация, [A -] — молярная концентрация сопряженной основы. Из приведенного уравнения можно сделать вывод, что, когда концентрация основания превышает концентрацию кислоты, то pH буферного раствора выше pK a, когда же [AH]> [A -], то наоборот — ниже.

Так что для приготовления буфера с желаемым pH можно выбрать слабую кислоту (или основу) с максимально приближенным значением pK a и рассчитать по уравнению Гендерсона-Гассельбаха соотношение кислоты и сопряженной основы, которые нужно смешать. Возможно также использовать и другие пути: например, титровать раствор слабой кислоты сильной щелочью, или ее соли сильной кислотой до нужного pH.

Изменение pH буферного раствора при добавлении сильных кислот или оснований

Чтобы вычислить, как изменится pH буферного раствора при добавлении известного количества сильной кислоты или основания, следует сначала использовать принципы стехиометрии, чтобы выяснить количество одного компонента буферного раствора при этом превратится в другой. Предполагается, что реакция нейтрализации происходит до конца (например, если в ацетатного буфера добавить 0,1 моль гидроксида натрия, то можно считать, что количество уксусной кислоты в растворе уменьшится на 0,1 моль, а количество ацетата увеличится на такое же значение). Полученные значения новых концентраций компонентов буфера можно подставить в уравнение Гендерсона-Гассельбаха для вычисления равновесного значения pH.

Практическое значение pH буферов

Буферные системы существуют внутри всех живых клеток, так как большинство из химических превращений, происходящих в них зависящие от pH. С этой же причине в лабораториях при исследовании свойств белков, особенно ферментов, нуклеиновых кислот и других биомолекул всегда используют pH буфера.

pH буфера широко используются во многих отраслях промышленности и в лабораторной практике. Например, один из первых этапов пивоварения — измельчение солода — должен происходить при pH от 5,0 до 5,2. С изготовлением пива связано и само открытие шкалы pH, поскольку ее изобретатель Сорен Соренсон работал исследователем на пивоварне.

Буферные системы крови человека

pH крови человека в среднем составляет 7,4, изменение этого значения даже на одну десятую единицы приводит к тяжелым нарушениям (ацидоза или алкалоза). Когда водородный показатель выходит за пределы диапазона 6,8 ÷ 7,8, это обычно ведет к гибели. Важнейшее буферная система крови — угольная (HCO-3 / H 2 CO 3), вторая по значению — фосфатный (HPO2-4 / H 2 PO-4), также определенную роль в поддержании pH играют белки.

PH буфера в биологических лабораториях

Значение pK a некоторых буферных агентов
Буферный агент pK a
Трис 8,3
TES 7,55
HEPES 7,55
MOPS 7,2
PIPES 6,8

В экспериментах с биохимии и молекулярной биологии первично использовались обычные буфера на основе слабых кислот и их сопряженных оснований, такие как цитратные, ацететни, фосфатные. Однако они имели ряд недостатков, таких как довольно значительное изменение pH при разведении или изменении температуры, проникновения их компонентов через клеточные мембраны и влияние на физиологические процессы. Поэтому на смену им стали применять буферы на основе других веществ, например основы трис (гидроксиметил) аминометану (сокращенно трис), цвиттер-ионной соединения MOPS и тому подобное.

Норман Гуд разработал серию буферов на основе соединений, молекулы которых могут находиться в состоянии цвиттерионив, таких как HEPES, PIPES, MES. Гуд отбирал буферные агенты на основе таких желательных признаков как: значение pK a в диапазоне 6 ÷ 8, соответствует физиологическим значением pH, высокая растворимость в воде, нерастворимость в полярных соединениях, непроницаемость через мембраны, малое влияние на ионную силу раствора, максимальная независимость диссоциации от температуры и концентрации, стабильность, легкость в приготовлении. Также буферные агенты не должны поглощать видимый и ультрафиолетовый свет с длиной волны более 230 нм, чтобы не препятствовать стандартным методам спектрофотометрии. Ни одна из известных соединений не подходит идеально под все описанные признаки, однако имеющийся выбор буферных агентов позволяет выбрать нужный для каждой конкретной задачи.

Другие типы буферных систем

В химическом анализе применяют и другие буферные системы: окислительно-восстановительные буферные растворы для образования и сохранения окислительно-восстановительного потенциала, например, на основе смеси солей Fe (II) и Fe (III); кальциевый буферный раствор для образования и сохранения активности катионов кальция, например на основе смеси эквимолярной количества дигликоляту натрия и кальция или натриевой и кальциевой солей нитрилацетатнои кислоты. В ионометрии широко используются буферные растворы для образования общей ионной силы раствора (БРЗИС).

Буферный раствор постоянной ионной силы

Буферный раствор с высокой ионной силой, которая прилагается к аналiзованого и калиброванного растворов с целью обеспечения в них одинаковой ионной силы при равной активности йонiв Н + в этих растворах.